Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Mol Ther Nucleic Acids ; 35(2): 102198, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38745854

RESUMEN

The CD3/T cell receptor (TCR) complex is responsible for antigen-specific pathogen recognition by T cells, and initiates the signaling cascade necessary for activation of effector functions. CD3 agonistic antibodies are commonly used to expand T lymphocytes in a wide range of clinical applications, including in adoptive T cell therapy for cancer patients. A major drawback of expanding T cell populations ex vivo using CD3 agonistic antibodies is that they expand and activate T cells independent of their TCR antigen specificity. Therapeutic agents that facilitate expansion of T cells in an antigen-specific manner and reduce their threshold of T cell activation are therefore of great interest for adoptive T cell therapy protocols. To identify CD3-specific T cell agonists, several RNA aptamers were selected against CD3 using Systematic Evolution of Ligands by EXponential enrichment combined with high-throughput sequencing. The extent and specificity of aptamer binding to target CD3 were assessed through surface plasma resonance, P32 double-filter assays, and flow cytometry. Aptamer-mediated modulation of the threshold of T cell activation was observed in vitro and in preclinical transgenic TCR mouse models. The aptamers improved efficacy and persistence of adoptive T cell therapy by low-affinity TCR-reactive T lymphocytes in melanoma-bearing mice. Thus, CD3-specific aptamers can be applied as therapeutic agents which facilitate the expansion of tumor-reactive T lymphocytes while conserving their tumor specificity. Furthermore, selected CD3 aptamers also exhibit cross-reactivity to human CD3, expanding their potential for clinical translation and application in the future.

2.
Methods Mol Biol ; 2800: 147-165, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709483

RESUMEN

Molecular forces are increasingly recognized as an important parameter to understand cellular signaling processes. In the recent years, evidence accumulated that also T-cells exert tensile forces via their T-cell receptor during the antigen recognition process. To measure such intercellular pulling forces, one can make use of the elastic properties of spider silk peptides, which act similar to Hookean springs: increased strain corresponds to increased stress applied to the peptide. Combined with Förster resonance energy transfer (FRET) to read out the strain, such peptides represent powerful and versatile nanoscopic force sensing tools. In this paper, we provide a detailed protocol how to synthesize a molecular force sensor for application in T-cell antigen recognition and hands-on guidelines on experiments and analysis of obtained single molecule FRET data.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Receptores de Antígenos de Linfocitos T , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Imagen Individual de Molécula/métodos , Animales , Péptidos/química , Péptidos/inmunología , Péptidos/metabolismo , Seda/química
3.
Genome Biol Evol ; 16(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38411226

RESUMEN

Delayed fatherhood results in a higher risk of inheriting a new germline mutation that might result in a congenital disorder in the offspring. In particular, some FGFR3 mutations increase in frequency with age, but there are still a large number of uncharacterized FGFR3 mutations that could be expanding in the male germline with potentially early- or late-onset effects in the offspring. Here, we used digital polymerase chain reaction to assess the frequency and spatial distribution of 10 different FGFR3 missense substitutions in the sexually mature male germline. Our functional assessment of the receptor signaling of the variants with biophysical methods showed that 9 of these variants resulted in a higher activation of the receptor´s downstream signaling, resulting in 2 different expansion behaviors. Variants that form larger subclonal expansions in a dissected postmortem testis also showed a positive correlation of the substitution frequency with the sperm donor's age, and a high and ligand-independent FGFR3 activation. In contrast, variants that measured high FGFR3 signaling and elevated substitution frequencies independent of the donor's age did not result in measurable subclonal expansions in the testis. This suggests that promiscuous signal activation might also result in an accumulation of mutations before the sexual maturation of the male gonad with clones staying relatively constant in size throughout time. Collectively, these results provide novel insights into our understanding of the mutagenesis of driver mutations and their resulting mosaicism in the male germline with important consequences for the transmission and recurrence of associated disorders.


Asunto(s)
Edad Paterna , Semen , Masculino , Humanos , Mutación , Testículo , Espermatozoides , Mutación de Línea Germinal
4.
EMBO Rep ; 24(11): e57842, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37768718

RESUMEN

Molecular crowding of agonist peptide/MHC class II complexes (pMHCIIs) with structurally similar, yet per se non-stimulatory endogenous pMHCIIs is postulated to sensitize T-cells for the recognition of single antigens on the surface of dendritic cells and B-cells. When testing this premise with the use of advanced live cell microscopy, we observe pMHCIIs as monomeric, randomly distributed entities diffusing rapidly after entering the APC surface. Synaptic TCR engagement of highly abundant endogenous pMHCIIs is low or non-existent and affects neither TCR engagement of rare agonist pMHCII in early and advanced synapses nor agonist-induced TCR-proximal signaling. Our findings highlight the capacity of single freely diffusing agonist pMHCIIs to elicit the full T-cell response in an autonomous and peptide-specific fashion with consequences for adaptive immunity and immunotherapeutic approaches.


Asunto(s)
Antígenos de Histocompatibilidad Clase II , Linfocitos T , Péptidos/metabolismo , Antígenos , Receptores de Antígenos de Linfocitos T
5.
Bioessays ; 45(12): e2300116, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37712937

RESUMEN

One persistent puzzle in the life sciences is the asymmetric lipid composition of the cellular plasma membrane: while the exoplasmic leaflet is enriched in lipids carrying predominantly saturated fatty acids, the cytoplasmic leaflet hosts preferentially lipids with (poly-)unsaturated fatty acids. Given the high energy requirements necessary for cells to maintain this asymmetry, the question naturally arises regarding its inherent benefits. In this paper, we propose asymmetry to represent a potential solution for harmonizing two conflicting requirements for the plasma membrane: first, the need to build a barrier for the uncontrolled influx or efflux of substances; and second, the need to form a fluid and dynamic two-dimensional substrate for signaling processes. We hence view here the plasma membrane as a composite material, where the exoplasmic leaflet is mainly responsible for the functional integrity of the barrier and the cytoplasmic leaflet for fluidity. We reinforce the validity of the proposed mechanism by presenting quantitative data from the literature, along with multiple examples that bolster our model.


Asunto(s)
Lípidos de la Membrana , Lípidos de la Membrana/química , Membrana Celular/metabolismo , Transporte Biológico
6.
Biophys J ; 122(11): 2367-2380, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37088991

RESUMEN

The interplay and communication between cells build the foundation of life. Many signaling processes at the cell surface and inside the cell, as well as the cellular function itself, depend on protein-protein interactions and the oligomerization of proteins. In the past, we presented an approach to single out interactions of fluorescently labeled membrane proteins by combining photobleaching and single-molecule microscopy. With this approach, termed "thinning out clusters while conserving the stoichiometry of labeling" (TOCCSL), oligomerization can be detected even at physiologically high surface densities of fluorescently labeled proteins. In TOCCSL, an aperture-restricted region of the plasma membrane is irreversibly photobleached by applying a high-intensity laser pulse. During a recovery time, in which illumination is turned off, nonphotobleached molecules from the nonilluminated area of the plasma membrane re-populate the aperture-restricted region. At the onset of this recovery process, these molecules can be detected as well-separated, diffraction-limited signals and their oligomerization state can be quantified. Here, we used extensive Monte Carlo simulations to provide a theoretical framework for quantitative interpretation of TOCCSL measurements. We determined the influence of experimental parameters and intrinsic characteristics of the investigated system on the outcome of a TOCCSL experiment. We identified the diffraction-affected laser intensity profile and the diffusion of molecules at the aperture edges during photobleaching as major sources of generating partially photobleached oligomers. They are falsely detected as lower-order oligomers and, hence, higher-order oligomers might be prevented from detection. The amount of partially photobleached oligomers that are analyzed depends on the photobleaching and the recovery time, on the mobility of molecules and-for mixed populations of oligomers-on mobility differences between different kinds of oligomers. Moreover, we quantified random colocalizations of molecules after recovery, which are falsely detected as higher-order oligomers.


Asunto(s)
Proteínas de la Membrana , Método de Montecarlo , Difusión , Membrana Celular
7.
Front Immunol ; 14: 1110482, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817444

RESUMEN

In engineered T cells the CAR is co-expressed along with the physiological TCR/CD3 complex, both utilizing the same downstream signaling machinery for T cell activation. It is unresolved whether CAR-mediated T cell activation depends on the presence of the TCR and whether CAR and TCR mutually cross-activate upon engaging their respective antigen. Here we demonstrate that the CD3ζ CAR level was independent of the TCR associated CD3ζ and could not replace CD3ζ to rescue the TCR complex in CD3ζ KO T cells. Upon activation, the CAR did not induce phosphorylation of TCR associated CD3ζ and, vice versa, TCR activation did not induce CAR CD3ζ phosphorylation. Consequently, CAR and TCR did not cross-signal to trigger T cell effector functions. On the membrane level, TCR and CAR formed separate synapses upon antigen engagement as revealed by total internal reflection fluorescence (TIRF) and fast AiryScan microscopy. Upon engaging their respective antigen, however, CAR and TCR could co-operate in triggering effector functions through combinatorial signaling allowing logic "AND" gating in target recognition. Data also imply that tonic TCR signaling can support CAR-mediated T cell activation emphasizing the potential relevance of the endogenous TCR for maintaining T cell capacities in the long-term.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Linfocitos T , Complejo CD3 , Complejo Receptor-CD3 del Antígeno de Linfocito T/metabolismo , Transducción de Señal , Receptores Quiméricos de Antígenos/inmunología
8.
EMBO J ; 42(7): e113507, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36808636

RESUMEN

T-cell antigen recognition is invariably affected by tensile forces as they are exerted on T-cell antigen receptors (TCRs) transiently binding antigenic peptide/MHC complexes. In this issue of The EMBO Journal, Pettmann and colleagues promote the concept that forces reduce the lifetime of more stable stimulatory TCR-pMHC interactions to a larger extent than that of less stable non-stimulatory TCR-pMHC interactions. The authors argue that forces impede rather than boost T-cell antigen discrimination, which is promoted by force-shielding within the immunological synapse through cell adhesion via CD2/CD58 and LFA-1/ICAM-1.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Linfocitos T , Receptores de Antígenos de Linfocitos T/metabolismo
9.
J Biol Chem ; 299(2): 102832, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36581204

RESUMEN

Fibroblast growth factor receptors (FGFRs) initiate signal transduction via the RAS/mitogen-activated protein kinase pathway by their tyrosine kinase activation known to determine cell growth, tissue differentiation, and apoptosis. Recently, many missense mutations have been reported for FGFR3, but we only know the functional effect for a handful of them. Some mutations result in aberrant FGFR3 signaling and are associated with various genetic disorders and oncogenic conditions. Here, we employed micropatterned surfaces to specifically enrich fluorophore-tagged FGFR3 (monomeric GFP [mGFP]-FGFR3) in certain areas of the plasma membrane of living cells. We quantified receptor activation via total internal reflection fluorescence microscopy of FGFR3 signaling at the cell membrane that captured the recruitment of the downstream signal transducer growth factor receptor-bound 2 (GRB2) tagged with mScarlet (GRB2-mScarlet) to FGFR3 micropatterns. With this system, we tested the activation of FGFR3 upon ligand addition (fgf1 and fgf2) for WT and four FGFR3 mutants associated with congenital disorders (G380R, Y373C, K650Q, and K650E). Our data showed that ligand addition increased GRB2 recruitment to WT FGFR3, with fgf1 having a stronger effect than fgf2. For all mutants, we found an increased basal receptor activity, and only for two of the four mutants (G380R and K650Q), activity was further increased upon ligand addition. Compared with previous reports, two mutant receptors (K650Q and K650E) had either an unexpectedly high or low activation state, respectively. This can be attributed to the different methodology, since micropatterning specifically captures signaling events at the plasma membrane. Collectively, our results provide further insight into the functional effects of mutations to FGFR3.


Asunto(s)
Membrana Celular , Proteína Adaptadora GRB2 , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Membrana Celular/metabolismo , Factor 1 de Crecimiento de Fibroblastos , Factor 2 de Crecimiento de Fibroblastos , Ligandos , Microscopía Fluorescente , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Proteína Adaptadora GRB2/metabolismo
10.
Commun Biol ; 5(1): 1259, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396757

RESUMEN

The plasmalemmal norepinephrine transporter (NET) regulates cardiovascular sympathetic activity by clearing extracellular norepinephrine in the synaptic cleft. Here, we investigate the subunit stoichiometry and function of NET using single-molecule fluorescence microscopy and flux assays. In particular, we show the effect of phosphatidylinositol 4,5-bisphosphate (PIP2) on NET oligomerization and efflux. NET forms monomers (~60%) and dimers (~40%) at the plasma membrane. PIP2 depletion results in a decrease in the average oligomeric state and decreases NET-mediated substrate efflux while not affecting substrate uptake. Mutation of the putative PIP2 binding residues R121, K334, and R440 to alanines does not affect NET dimerization but results in decreased substrate efflux that is not altered upon PIP2 depletion; this indicates that PIP2 interactions with these residues affect NET-mediated efflux. A dysregulation of norepinephrine and PIP2 signaling have both been implicated in neuropsychiatric and cardiovascular diseases. This study provides evidence that PIP2 directly regulates NET organization and function.


Asunto(s)
Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática , Fosfatidilinositoles , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/genética , Dimerización , Transporte Biológico , Fosfatos de Inositol , Norepinefrina
11.
Front Bioinform ; 2: 811053, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304307

RESUMEN

The human mind shows extraordinary capability at recognizing patterns, while at the same time tending to underestimate the natural scope of random processes. Taken together, this easily misleads researchers in judging whether the observed characteristics of their data are of significance or just the outcome of random effects. One of the best tools to assess whether observed features fall into the scope of pure randomness is statistical significance testing, which quantifies the probability to falsely reject a chosen null hypothesis. The central parameter in this context is the p-value, which can be calculated from the recorded data sets. In case of p-values smaller than the level of significance, the null hypothesis is rejected, otherwise not. While significance testing has found widespread application in many sciences including the life sciences, it is hardly used in (bio-)physics. We propose here that significance testing provides an important and valid addendum to the toolbox of quantitative (single molecule) biology. It allows to support a quantitative judgement (the hypothesis) about the data set with a probabilistic assessment. In this manuscript we describe ways for obtaining valid p-values in two selected applications of single molecule microscopy: (i) Nanoclustering in single molecule localization microscopy. Previously, we developed a method termed 2-CLASTA, which allows to calculate a valid p-value for the null hypothesis of an underlying random distribution of molecules of interest while circumventing overcounting issues. Here, we present an extension to this approach, yielding a single overall p-value for data pooled from multiple cells or experiments. (ii) Single molecule trajectories. Data from a single molecule trajectory are inherently correlated, thus prohibiting a direct analysis via conventional statistical tools. Here, we introduce a block permutation test, which yields a valid p-value for the analysis and comparison of single molecule trajectory data. We exemplify the approach based on FRET trajectories.

12.
Front Immunol ; 13: 886328, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693808

RESUMEN

Efficient scanning of tissue that T cells encounter during their migratory life is pivotal to protective adaptive immunity. In fact, T cells can detect even a single antigenic peptide/MHC complex (pMHC) among thousands of structurally similar yet non-stimulatory endogenous pMHCs on the surface of antigen-presenting cells (APCs) or target cells. Of note, the glycocalyx of target cells, being composed of proteoglycans and bulky proteins, is bound to affect and even modulate antigen recognition by posing as a physical barrier. T cell-resident microvilli are actin-rich membrane protrusions that puncture through such barriers and thereby actively place the considerably smaller T-cell antigen receptors (TCRs) in close enough proximity to APC-presented pMHCs so that productive interactions may occur efficiently yet under force. We here review our current understanding of how the plasticity of T-cell microvilli and physicochemical properties of the glycocalyx may affect early events in T-cell activation. We assess insights gained from studies on T-cell plasma membrane ultrastructure and provide an update on current efforts to integrate biophysical aspects such as the amplitude and directionality of TCR-imposed mechanical forces and the distribution and lateral mobility of plasma membrane-resident signaling molecules into a more comprehensive view on sensitized T-cell antigen recognition.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Linfocitos T , Células Presentadoras de Antígenos , Antígenos/metabolismo , Activación de Linfocitos , Unión Proteica
13.
PLoS One ; 17(2): e0263500, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35120171

RESUMEN

Single molecule localization microscopy (SMLM) has the potential to resolve structural details of biological samples at the nanometer length scale. Compared to room temperature experiments, SMLM performed under cryogenic temperature achieves higher photon yields and, hence, higher localization precision. However, to fully exploit the resolution it is crucial to account for the anisotropic emission characteristics of fluorescence dipole emitters with fixed orientation. In case of slight residual defocus, localization estimates may well be biased by tens of nanometers. We show here that astigmatic imaging in combination with information about the dipole orientation allows to extract the position of the dipole emitters without localization bias and down to a precision of 1 nm, thereby reaching the corresponding Cramér Rao bound. The approach is showcased with simulated data for various dipole orientations, and parameter settings realistic for real life experiments.


Asunto(s)
Microscopía Fluorescente/métodos , Microscopía/métodos , Algoritmos , Fenómenos Biológicos , Frío , Fluorescencia , Funciones de Verosimilitud , Distribución Normal , Fotones , Probabilidad , Reproducibilidad de los Resultados , Imagen Individual de Molécula , Temperatura
14.
J Vis Exp ; (177)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34897275

RESUMEN

Single-molecule Förster resonance energy transfer (smFRET) is a versatile technique reporting on distances in the sub-nanometer to nanometer range. It has been used in a wide range of biophysical and molecular biological experiments, including the measurement of molecular forces, characterization of conformational dynamics of biomolecules, observation of intracellular colocalization of proteins, and determination of receptor-ligand interaction times. In a widefield microscopy configuration, experiments are typically performed using surface-immobilized probes. Here, a method combining single-molecule tracking with alternating excitation (ALEX) smFRET experiments is presented, permitting the acquisition of smFRET time traces of surface-bound, yet mobile probes in plasma membranes or glass-supported lipid bilayers. For the analysis of recorded data, an automated, open-source software collection was developed supporting (i) the localization of fluorescent signals, (ii) single-particle tracking, (iii) determination of FRET-related quantities including correction factors, (iv) stringent verification of smFRET traces, and (v) intuitive presentation of the results. The generated data can conveniently be used as input for further exploration via specialized software, e.g., for the assessment of the diffusional behavior of probes or the investigation of FRET transitions.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Imagen Individual de Molécula , Transferencia Resonante de Energía de Fluorescencia/métodos , Nanotecnología , Imagen Individual de Molécula/métodos , Programas Informáticos , Análisis Espacio-Temporal
15.
Nano Lett ; 21(21): 9247-9255, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34709845

RESUMEN

T-cells engage with antigen-presenting cells in search for antigenic peptides and form transient interfaces termed immunological synapses. Synapse topography affects receptor binding rates and the mutual segregation of proteins due to size exclusion effects. It is hence important to determine the 3D topography of the immunological synapse at high precision. Current methods provide only rather coarse images of the protein distribution within the synapse. Here, we applied supercritical angle fluorescence microscopy combined with defocused imaging, which allows three-dimensional single molecule localization microscopy (3D-SMLM) at an isotropic localization precision below 15 nm. Experiments were performed on hybrid synapses between primary T-cells and functionalized glass-supported lipid bilayers. We used 3D-SMLM to quantify the cleft size within the synapse by mapping the position of the T-cell receptor (TCR) with respect to the supported lipid bilayer, yielding average distances of 18 nm up to 31 nm for activating and nonactivating bilayers, respectively.


Asunto(s)
Sinapsis Inmunológicas , Imagen Individual de Molécula , Sinapsis Inmunológicas/metabolismo , Microscopía Fluorescente/métodos , Receptores de Antígenos de Linfocitos T , Imagen Individual de Molécula/métodos , Linfocitos T
16.
RSC Med Chem ; 12(7): 1174-1186, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34355183

RESUMEN

The utilization of fluorescent ligands to study the monoamine transporters (MATs) has increased our knowledge of their function and distribution in live cell systems. In this study, we extend SAR for nisoxetine and talopram as parent compounds, to identify high affinity rhodamine-labeled fluorescent probes for the norepinephrine transporter (NET). Nisoxetine-based fluorescent probe 6 demonstrated high binding affinity (K i = 43 nM) for NET and an overall selectivity compared to the other transporters for dopamine (DAT; K i = 1540 nM) and serotonin (SERT; K i = 785 nM) in competitive radioligand binding assays. Using confocal microscopy, compound 6 was shown to stain both NET and SERT, but not DAT, at low nanomolar concentrations, in transporter-expressing cells.

17.
ACS Nano ; 15(9): 15057-15068, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34463486

RESUMEN

DNA origami structures provide flexible scaffolds for the organization of single biomolecules with nanometer precision. While they find increasing use for a variety of biological applications, the functionalization with proteins at defined stoichiometry, high yield, and under preservation of protein function remains challenging. In this study, we applied single molecule fluorescence microscopy in combination with a cell biological functional assay to systematically evaluate different strategies for the site-specific decoration of DNA origami structures, focusing on efficiency, stoichiometry, and protein functionality. Using an activating ligand of the T-cell receptor (TCR) as the protein of interest, we found that two commonly used methodologies underperformed with regard to stoichiometry and protein functionality. While strategies employing tetravalent wildtype streptavidin for coupling of a biotinylated TCR-ligand yielded mixed populations of DNA origami structures featuring up to three proteins, the use of divalent (dSAv) or DNA-conjugated monovalent streptavidin (mSAv) allowed for site-specific attachment of a single biotinylated TCR-ligand. The most straightforward decoration strategy, via covalent DNA conjugation, resulted in a 3-fold decrease in ligand potency, likely due to charge-mediated impairment of protein function. Replacing DNA with charge-neutral peptide nucleic acid (PNA) in a ligand conjugate emerged as the coupling strategy with the best overall performance in our study, as it produced the highest yield with no multivalent DNA origami structures and fully retained protein functionality. With our study we aim to provide guidelines for the stoichiometrically defined, site-specific functionalization of DNA origami structures with proteins of choice serving a wide range of biological applications.


Asunto(s)
ADN , Nanoestructuras
18.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34183393

RESUMEN

Antimicrobial peptides (AMPs) contribute to an effective protection against infections. The antibacterial function of AMPs depends on their interactions with microbial membranes and lipids, such as lipopolysaccharide (LPS; endotoxin). Hyperinflammation induced by endotoxin is a key factor in bacterial sepsis and many other human diseases. Here, we provide a comprehensive profile of peptide-mediated LPS neutralization by systematic analysis of the effects of a set of AMPs and the peptide antibiotic polymyxin B (PMB) on the physicochemistry of endotoxin, macrophage activation, and lethality in mice. Mechanistic studies revealed that the host defense peptide LL-32 and PMB each reduce LPS-mediated activation also via a direct interaction of the peptides with the host cell. As a biophysical basis, we demonstrate modifications of the structure of cholesterol-rich membrane domains and the association of glycosylphosphatidylinositol (GPI)-anchored proteins. Our discovery of a host cell-directed mechanism of immune control contributes an important aspect in the development and therapeutic use of AMPs.


Asunto(s)
Catelicidinas/farmacología , Membrana Celular/metabolismo , Interacciones Huésped-Patógeno , Lipopolisacáridos/farmacología , Pruebas de Neutralización , Polimixina B/farmacología , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Transporte Biológico/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Colesterol/metabolismo , Femenino , Células HEK293 , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Inflamación/patología , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos
19.
Nat Commun ; 12(1): 2502, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947864

RESUMEN

Mechanical forces acting on ligand-engaged T-cell receptors (TCRs) have previously been implicated in T-cell antigen recognition, yet their magnitude, spread, and temporal behavior are still poorly defined. We here report a FRET-based sensor equipped either with a TCR-reactive single chain antibody fragment or peptide-loaded MHC, the physiological TCR-ligand. The sensor was tethered to planar glass-supported lipid bilayers (SLBs) and informed most directly on the magnitude and kinetics of TCR-imposed forces at the single molecule level. When confronting T-cells with gel-phase SLBs we observed both prior and upon T-cell activation a single, well-resolvable force-peak of approximately 5 pN and force loading rates on the TCR of 1.5 pN per second. When facing fluid-phase SLBs instead, T-cells still exerted tensile forces yet of threefold reduced magnitude and only prior to but not upon activation.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Antígenos de Histocompatibilidad/química , Receptores de Antígenos de Linfocitos T/química , Imagen Individual de Molécula/métodos , Anticuerpos de Cadena Única/química , Animales , Linfocitos T CD4-Positivos/química , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/química , Linfocitos T CD8-positivos/inmunología , Citocromos c/química , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Antígenos de Histocompatibilidad/inmunología , Cinética , Ligandos , Membrana Dobles de Lípidos/química , Ratones , Péptidos/química , Receptores de Antígenos de Linfocitos T/inmunología , Imagen Individual de Molécula/instrumentación , Anticuerpos de Cadena Única/inmunología , Análisis Espacio-Temporal
20.
Biomed Opt Express ; 12(2): 802-822, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33680543

RESUMEN

The precise spatial localization of single molecules in three dimensions is an important basis for single molecule localization microscopy (SMLM) and tracking. At distances up to a few hundred nanometers from the coverslip, evanescent wave coupling into the glass, also known as supercritical angle fluorescence (SAF), can strongly improve the axial precision, thus facilitating almost isotropic localization performance. Specific detection systems, introduced as Supercritical angle localization microscopy (SALM) or Direct optical nanoscopy with axially localized detection (DONALD), have been developed to exploit SAF in modified two-channel imaging schemes. Recently, our group has shown that off-focus microscopy, i.e., imaging at an intentional slight defocus, can perform equally well, but uses only a single detection arm. Here we compare SALM, off-focus imaging and the most commonly used 3D SMLM techniques, namely cylindrical lens and biplane imaging, regarding 3D localization in close proximity to the coverslip. We show that all methods gain from SAF, which leaves a high detection NA as the only major key requirement to unlock the SAF benefit. We find parameter settings for cylindrical lens and biplane imaging for highest z-precision. Further, we compare the methods in view of robustness to aberrations, fixed dipole emission and double-emitter events. We show that biplane imaging provides the best overall performance and support our findings by DNA-PAINT experiments on DNA-nanoruler samples. Our study sheds light on the effects of SAF for SMLM and is helpful for researchers who plan to employ localization-based 3D nanoscopy close to the coverslip.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...